Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Curr Med Chem ; 2022 Sep 06.
Article in English | MEDLINE | ID: covidwho-2233617

ABSTRACT

Given the importance of COVID-19-induced ARDS, recently, researchers have strived to determine underlying mechanisms involved in the inflammatory responses. In this regard, inflammasomes possess a distinct priority for cytokine storm occurrence and subsequently ARDS progression in ill patients with SARS-CoV-2 infection. In this mini-review, the characteristics of known inflammasome inhibitors and designed research in this field were concretely deciphered.

2.
Arch Med Sci ; 17(2): 275-284, 2021.
Article in English | MEDLINE | ID: covidwho-1145665

ABSTRACT

The outbreak of a newly identified coronavirus, the SARS-CoV-2 (alternative name 2019-nCoV), capable of jumping across species causing zoonosis with severe acute respiratory syndromes (SARS), has alerted authorities worldwide. Soon after the epidemic was first detected in the city of Wuhan in the Hubei Province of China, starting in late December 2019, the virus spread over multiple countries in different continents, being declared a pandemic by March 2020. The demographic characteristics of the infected patients suggest that age, sex, and comorbidities are predictive factors for the fatality of the infection. The mechanisms of viral entry into the human host cells seem to be in a close relationship with the mechanisms of regulating the renin-angiotensin system (RAS), which may explain the pathogenesis associated with the infection. This brings new insights into the possibilities of exploiting viral entry mechanisms to limit associated complications by means of enhancing the resistance of the infected patients using methods of regulating the RAS and strategies of modulating ACE2 expression. In this perspective article we exploit the mechanisms of COVID-19 pathogenesis based on the demographic characteristics of the infected patients reported in the recent literature and explore several approaches of limiting the initial steps of viral entry and pathogenesis based on viral interactions with ACE2 and RAS. We further discuss the implications of reproductive hormones in the regulation of the RAS and investigate the premise of using endocrine therapy against COVID-19.

3.
Arch Med Res ; 51(7): 733-735, 2020 10.
Article in English | MEDLINE | ID: covidwho-1023461

ABSTRACT

The discovery of new drugs for treating the new coronavirus (SARS-CoV-2) or repurposing those already in use for other viral infections is possible through understanding of the viral replication cycle and pathogenicity. This article highlights the advantage of targeting one of the non-structural proteins, helicase (nsp13), over other SARS-CoV-2 proteins. Highlighting the experience gained from targeting Nsp13 in similar coronaviruses (SARS-CoV and MERS) and known inhibitors, the article calls for research on helicase inhibitors as potential COVID-19 therapy.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Enzyme Inhibitors , RNA Helicases/antagonists & inhibitors , SARS-CoV-2 , COVID-19/virology , Humans , Methyltransferases/antagonists & inhibitors , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/antagonists & inhibitors
5.
Eur J Pharmacol ; 882: 173288, 2020 Sep 05.
Article in English | MEDLINE | ID: covidwho-959742

ABSTRACT

In December 2019, many pneumonia cases with unidentified sources appeared in Wuhan, Hubei, China, with clinical symptoms like viral pneumonia. Deep sequencing analysis of samples from lower respiratory tract revealed a novel coronavirus, called 2019 novel coronavirus (2019-nCoV). Currently there is a rapid global spread. World Health Organization declare the disease a pandemic condition. The pathologic source of this disease was a new RNA virus from Coronaviridae family, which was named COVID-19. SARS-CoV-2 entry starts with the binding of the spike glycoprotein expressed on the viral envelope to ACE2 on the alveolar surface followed by clathrin-dependent endocytosis of the SARS-CoV-2 and ACE2 complex. SARS-CoV-2 enters the cells through endocytosis process, which is possibly facilitated, via a pH dependent endosomal cysteine protease cathepsins. Once inside the cells, SARS-CoV-2 exploits the endogenous transcriptional machinery of alveolar cells to replicate and spread through the entire lung. Endosomal acidic pH for SARS-CoV-2 processing and internalization is critical. After entering the cells, it possibly activates or hijack many intracellular pathways in favor of its replication. In the current opinion article, we will explain the possible involvement of unfolded protein response as a cellular stress response to the SARS-CoV-2 infection.


Subject(s)
Alveolar Epithelial Cells/drug effects , Coronavirus Infections/drug therapy , Endoplasmic Reticulum/drug effects , Ionophores/pharmacology , Pneumonia, Viral/drug therapy , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Angiotensin-Converting Enzyme 2 , Betacoronavirus/metabolism , COVID-19 , Clathrin-Coated Vesicles/drug effects , Clathrin-Coated Vesicles/metabolism , Coronavirus Infections/virology , Endocytosis/drug effects , Endoplasmic Reticulum/metabolism , Endosomes/drug effects , Endosomes/metabolism , Humans , Ionophores/therapeutic use , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , SARS-CoV-2 , Unfolded Protein Response/drug effects , COVID-19 Drug Treatment
6.
J Cell Mol Med ; 25(1): 591-595, 2021 01.
Article in English | MEDLINE | ID: covidwho-934013

ABSTRACT

COVID-19 can present with a variety of clinical features, ranging from asymptomatic or mild respiratory symptoms to fulminant acute respiratory distress syndrome (ARDS) depending on the host's immune responses and the extent of the associated pathologies. This implies that several measures need to be taken to limit severely impairing symptoms caused by viral-induced pathology in vital organs. Opioids are most exploited for their analgesic effects but their usage in the palliation of dyspnoea, immunomodulation and lysosomotropism may represent potential usages of opioids in COVID-19. Here, we describe the mechanisms involved in each of these potential usages, highlighting the benefits of using opioids in the treatment of ARDS from SARS-CoV-2 infection.


Subject(s)
Analgesics, Opioid/therapeutic use , COVID-19 Drug Treatment , COVID-19/etiology , Respiratory Distress Syndrome/drug therapy , Analgesics, Opioid/administration & dosage , COVID-19/complications , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/virology , Dyspnea/drug therapy , Dyspnea/etiology , Humans , Immunomodulation/drug effects , Immunomodulation/physiology , Lysosomes/drug effects , Receptors, Opioid/immunology
7.
Archives of Medical Science ; 16(4):1-10, 2020.
Article | Academic Search Complete | ID: covidwho-823771

ABSTRACT

The outbreak of a newly identified coronavirus, the SARS-CoV-2 (alternative name 2019-nCoV), capable of jumping across species causing zoonosis with severe acute respiratory syndromes (SARS), has alerted authorities worldwide. Soon after the epidemic was first detected in the city of Wuhan in the Hubei Province of China, starting in late December 2019, the virus spread over multiple countries in different continents, being declared a pandemic by March 2020. The demographic characteristics of the infected patients suggest that age, sex, and comorbidities are predictive factors for the fatality of the infection. The mechanisms of viral entry into the human host cells seem to be in a close relationship with the mechanisms of regulating the renin-angiotensin system (RAS), which may explain the pathogenesis associated with the infection. This brings new insights into the possibilities of exploiting viral entry mechanisms to limit associated complications by means of enhancing the resistance of the infected patients using methods of regulating the RAS and strategies of modulating ACE2 expression. In this perspective article we exploit the mechanisms of COVID-19 pathogenesis based on the demographic characteristics of the infected patients reported in the recent literature and explore several approaches of limiting the initial steps of viral entry and pathogenesis based on viral interactions with ACE2 and RAS. We further discuss the implications of reproductive hormones in the regulation of the RAS and investigate the premise of using endocrine therapy against COVID-19. [ABSTRACT FROM AUTHOR] Copyright of Archives of Medical Science is the property of Termedia Publishing House and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

9.
Biochimie ; 177: 50-52, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-713261

ABSTRACT

Various interferon (IFN)-inducible transmembrane (IFITM) proteins are known to be expressed in human tissues though only IFITM 1-3 are inducible by IFN. Numerous studies have shown that activation of IFITM3 could suppress infection by influenza and coronaviruses such as the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). In view of the potential application of IFITM proteins' induction to target SARS-CoV-2 infection that causes COVID-19, this article layout insights into the known antiviral mechanisms and therapeutic agents related to IFITM. Blocking viral entry through various mechanisms and the potential application of the FDA approved immunosuppressant agent, mycophenolic acid, as inducer of IFITM3 are among those discussed.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Interferons/pharmacology , Membrane Proteins/drug effects , Mycophenolic Acid/pharmacology , Pneumonia, Viral/drug therapy , RNA-Binding Proteins/drug effects , Animals , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Humans , Immunosuppressive Agents/pharmacology , Membrane Proteins/immunology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , RNA-Binding Proteins/immunology , SARS-CoV-2 , COVID-19 Drug Treatment
10.
Mini Rev Med Chem ; 20(18): 1900-1907, 2020.
Article in English | MEDLINE | ID: covidwho-706996

ABSTRACT

The global spread of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that causes COVID-19 has become a source of grave medical and socioeconomic concern to human society. Since its first appearance in the Wuhan region of China in December 2019, the most effective measures of managing the spread of SARS-CoV-2 infection have been social distancing and lockdown of human activity; the level of which has not been seen in our generations. Effective control of the viral infection and COVID-19 will ultimately depend on the development of either a vaccine or therapeutic agents. This article highlights the progresses made so far in these strategies by assessing key targets associated with the viral replication cycle. The key viral proteins and enzymes that could be targeted by new and repurposed drugs are discussed.


Subject(s)
COVID-19/therapy , Coronavirus 3C Proteases/antagonists & inhibitors , RNA Helicases/antagonists & inhibitors , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Antibodies/therapeutic use , Antiprotozoal Agents/therapeutic use , COVID-19/virology , Coronavirus 3C Proteases/metabolism , Humans , Nucleosides/analogs & derivatives , Nucleosides/metabolism , Nucleosides/therapeutic use , Protease Inhibitors/therapeutic use , RNA Helicases/metabolism , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology
SELECTION OF CITATIONS
SEARCH DETAIL